3.42 \(\int \frac{d+e x}{(4-5 x^2+x^4)^3} \, dx\)

Optimal. Leaf size=143 \[ -\frac{d x \left (59-35 x^2\right )}{3456 \left (x^4-5 x^2+4\right )}+\frac{d x \left (17-5 x^2\right )}{144 \left (x^4-5 x^2+4\right )^2}-\frac{313 d \tanh ^{-1}\left (\frac{x}{2}\right )}{20736}+\frac{13}{648} d \tanh ^{-1}(x)-\frac{e \left (5-2 x^2\right )}{54 \left (x^4-5 x^2+4\right )}+\frac{e \left (5-2 x^2\right )}{36 \left (x^4-5 x^2+4\right )^2}-\frac{1}{81} e \log \left (1-x^2\right )+\frac{1}{81} e \log \left (4-x^2\right ) \]

[Out]

(d*x*(17 - 5*x^2))/(144*(4 - 5*x^2 + x^4)^2) + (e*(5 - 2*x^2))/(36*(4 - 5*x^2 + x^4)^2) - (d*x*(59 - 35*x^2))/
(3456*(4 - 5*x^2 + x^4)) - (e*(5 - 2*x^2))/(54*(4 - 5*x^2 + x^4)) - (313*d*ArcTanh[x/2])/20736 + (13*d*ArcTanh
[x])/648 - (e*Log[1 - x^2])/81 + (e*Log[4 - x^2])/81

________________________________________________________________________________________

Rubi [A]  time = 0.0758338, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 10, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.556, Rules used = {1673, 12, 1092, 1178, 1166, 207, 1107, 614, 616, 31} \[ -\frac{d x \left (59-35 x^2\right )}{3456 \left (x^4-5 x^2+4\right )}+\frac{d x \left (17-5 x^2\right )}{144 \left (x^4-5 x^2+4\right )^2}-\frac{313 d \tanh ^{-1}\left (\frac{x}{2}\right )}{20736}+\frac{13}{648} d \tanh ^{-1}(x)-\frac{e \left (5-2 x^2\right )}{54 \left (x^4-5 x^2+4\right )}+\frac{e \left (5-2 x^2\right )}{36 \left (x^4-5 x^2+4\right )^2}-\frac{1}{81} e \log \left (1-x^2\right )+\frac{1}{81} e \log \left (4-x^2\right ) \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(4 - 5*x^2 + x^4)^3,x]

[Out]

(d*x*(17 - 5*x^2))/(144*(4 - 5*x^2 + x^4)^2) + (e*(5 - 2*x^2))/(36*(4 - 5*x^2 + x^4)^2) - (d*x*(59 - 35*x^2))/
(3456*(4 - 5*x^2 + x^4)) - (e*(5 - 2*x^2))/(54*(4 - 5*x^2 + x^4)) - (313*d*ArcTanh[x/2])/20736 + (13*d*ArcTanh
[x])/648 - (e*Log[1 - x^2])/81 + (e*Log[4 - x^2])/81

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1092

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(x*(b^2 - 2*a*c + b*c*x^2)*(a + b*x^2 + c*x^
4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(b^2 - 2*a*c + 2*(p + 1)
*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 616

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{d+e x}{\left (4-5 x^2+x^4\right )^3} \, dx &=\int \frac{d}{\left (4-5 x^2+x^4\right )^3} \, dx+\int \frac{e x}{\left (4-5 x^2+x^4\right )^3} \, dx\\ &=d \int \frac{1}{\left (4-5 x^2+x^4\right )^3} \, dx+e \int \frac{x}{\left (4-5 x^2+x^4\right )^3} \, dx\\ &=\frac{d x \left (17-5 x^2\right )}{144 \left (4-5 x^2+x^4\right )^2}-\frac{1}{144} d \int \frac{-19+25 x^2}{\left (4-5 x^2+x^4\right )^2} \, dx+\frac{1}{2} e \operatorname{Subst}\left (\int \frac{1}{\left (4-5 x+x^2\right )^3} \, dx,x,x^2\right )\\ &=\frac{d x \left (17-5 x^2\right )}{144 \left (4-5 x^2+x^4\right )^2}+\frac{e \left (5-2 x^2\right )}{36 \left (4-5 x^2+x^4\right )^2}-\frac{d x \left (59-35 x^2\right )}{3456 \left (4-5 x^2+x^4\right )}+\frac{d \int \frac{519+105 x^2}{4-5 x^2+x^4} \, dx}{10368}-\frac{1}{6} e \operatorname{Subst}\left (\int \frac{1}{\left (4-5 x+x^2\right )^2} \, dx,x,x^2\right )\\ &=\frac{d x \left (17-5 x^2\right )}{144 \left (4-5 x^2+x^4\right )^2}+\frac{e \left (5-2 x^2\right )}{36 \left (4-5 x^2+x^4\right )^2}-\frac{d x \left (59-35 x^2\right )}{3456 \left (4-5 x^2+x^4\right )}-\frac{e \left (5-2 x^2\right )}{54 \left (4-5 x^2+x^4\right )}-\frac{1}{648} (13 d) \int \frac{1}{-1+x^2} \, dx+\frac{(313 d) \int \frac{1}{-4+x^2} \, dx}{10368}+\frac{1}{27} e \operatorname{Subst}\left (\int \frac{1}{4-5 x+x^2} \, dx,x,x^2\right )\\ &=\frac{d x \left (17-5 x^2\right )}{144 \left (4-5 x^2+x^4\right )^2}+\frac{e \left (5-2 x^2\right )}{36 \left (4-5 x^2+x^4\right )^2}-\frac{d x \left (59-35 x^2\right )}{3456 \left (4-5 x^2+x^4\right )}-\frac{e \left (5-2 x^2\right )}{54 \left (4-5 x^2+x^4\right )}-\frac{313 d \tanh ^{-1}\left (\frac{x}{2}\right )}{20736}+\frac{13}{648} d \tanh ^{-1}(x)+\frac{1}{81} e \operatorname{Subst}\left (\int \frac{1}{-4+x} \, dx,x,x^2\right )-\frac{1}{81} e \operatorname{Subst}\left (\int \frac{1}{-1+x} \, dx,x,x^2\right )\\ &=\frac{d x \left (17-5 x^2\right )}{144 \left (4-5 x^2+x^4\right )^2}+\frac{e \left (5-2 x^2\right )}{36 \left (4-5 x^2+x^4\right )^2}-\frac{d x \left (59-35 x^2\right )}{3456 \left (4-5 x^2+x^4\right )}-\frac{e \left (5-2 x^2\right )}{54 \left (4-5 x^2+x^4\right )}-\frac{313 d \tanh ^{-1}\left (\frac{x}{2}\right )}{20736}+\frac{13}{648} d \tanh ^{-1}(x)-\frac{1}{81} e \log \left (1-x^2\right )+\frac{1}{81} e \log \left (4-x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.098161, size = 128, normalized size = 0.9 \[ \frac{\frac{288 \left (d x \left (17-5 x^2\right )+e \left (20-8 x^2\right )\right )}{\left (x^4-5 x^2+4\right )^2}+\frac{12 \left (d x \left (35 x^2-59\right )+64 e \left (2 x^2-5\right )\right )}{x^4-5 x^2+4}-32 (13 d+16 e) \log (1-x)+(313 d+512 e) \log (2-x)+32 (13 d-16 e) \log (x+1)+(512 e-313 d) \log (x+2)}{41472} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(4 - 5*x^2 + x^4)^3,x]

[Out]

((288*(e*(20 - 8*x^2) + d*x*(17 - 5*x^2)))/(4 - 5*x^2 + x^4)^2 + (12*(64*e*(-5 + 2*x^2) + d*x*(-59 + 35*x^2)))
/(4 - 5*x^2 + x^4) - 32*(13*d + 16*e)*Log[1 - x] + (313*d + 512*e)*Log[2 - x] + 32*(13*d - 16*e)*Log[1 + x] +
(-313*d + 512*e)*Log[2 + x])/41472

________________________________________________________________________________________

Maple [A]  time = 0.019, size = 186, normalized size = 1.3 \begin{align*} -{\frac{313\,\ln \left ( 2+x \right ) d}{41472}}+{\frac{\ln \left ( 2+x \right ) e}{81}}+{\frac{19\,d}{13824+6912\,x}}-{\frac{17\,e}{6912+3456\,x}}+{\frac{d}{3456\, \left ( 2+x \right ) ^{2}}}-{\frac{e}{1728\, \left ( 2+x \right ) ^{2}}}+{\frac{d}{432+432\,x}}-{\frac{e}{144+144\,x}}-{\frac{d}{432\, \left ( 1+x \right ) ^{2}}}+{\frac{e}{432\, \left ( 1+x \right ) ^{2}}}+{\frac{13\,\ln \left ( 1+x \right ) d}{1296}}-{\frac{\ln \left ( 1+x \right ) e}{81}}+{\frac{19\,d}{6912\,x-13824}}+{\frac{17\,e}{3456\,x-6912}}-{\frac{d}{3456\, \left ( x-2 \right ) ^{2}}}-{\frac{e}{1728\, \left ( x-2 \right ) ^{2}}}+{\frac{313\,\ln \left ( x-2 \right ) d}{41472}}+{\frac{\ln \left ( x-2 \right ) e}{81}}-{\frac{13\,\ln \left ( x-1 \right ) d}{1296}}-{\frac{\ln \left ( x-1 \right ) e}{81}}+{\frac{d}{432\,x-432}}+{\frac{e}{144\,x-144}}+{\frac{d}{432\, \left ( x-1 \right ) ^{2}}}+{\frac{e}{432\, \left ( x-1 \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(x^4-5*x^2+4)^3,x)

[Out]

-313/41472*ln(2+x)*d+1/81*ln(2+x)*e+19/6912/(2+x)*d-17/3456/(2+x)*e+1/3456/(2+x)^2*d-1/1728/(2+x)^2*e+1/432/(1
+x)*d-1/144/(1+x)*e-1/432/(1+x)^2*d+1/432/(1+x)^2*e+13/1296*ln(1+x)*d-1/81*ln(1+x)*e+19/6912/(x-2)*d+17/3456/(
x-2)*e-1/3456/(x-2)^2*d-1/1728/(x-2)^2*e+313/41472*ln(x-2)*d+1/81*ln(x-2)*e-13/1296*ln(x-1)*d-1/81*ln(x-1)*e+1
/432/(x-1)*d+1/144/(x-1)*e+1/432/(x-1)^2*d+1/432/(x-1)^2*e

________________________________________________________________________________________

Maxima [A]  time = 0.940788, size = 163, normalized size = 1.14 \begin{align*} -\frac{1}{41472} \,{\left (313 \, d - 512 \, e\right )} \log \left (x + 2\right ) + \frac{1}{1296} \,{\left (13 \, d - 16 \, e\right )} \log \left (x + 1\right ) - \frac{1}{1296} \,{\left (13 \, d + 16 \, e\right )} \log \left (x - 1\right ) + \frac{1}{41472} \,{\left (313 \, d + 512 \, e\right )} \log \left (x - 2\right ) + \frac{35 \, d x^{7} + 128 \, e x^{6} - 234 \, d x^{5} - 960 \, e x^{4} + 315 \, d x^{3} + 1920 \, e x^{2} + 172 \, d x - 800 \, e}{3456 \,{\left (x^{8} - 10 \, x^{6} + 33 \, x^{4} - 40 \, x^{2} + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^3,x, algorithm="maxima")

[Out]

-1/41472*(313*d - 512*e)*log(x + 2) + 1/1296*(13*d - 16*e)*log(x + 1) - 1/1296*(13*d + 16*e)*log(x - 1) + 1/41
472*(313*d + 512*e)*log(x - 2) + 1/3456*(35*d*x^7 + 128*e*x^6 - 234*d*x^5 - 960*e*x^4 + 315*d*x^3 + 1920*e*x^2
 + 172*d*x - 800*e)/(x^8 - 10*x^6 + 33*x^4 - 40*x^2 + 16)

________________________________________________________________________________________

Fricas [B]  time = 2.07694, size = 869, normalized size = 6.08 \begin{align*} \frac{420 \, d x^{7} + 1536 \, e x^{6} - 2808 \, d x^{5} - 11520 \, e x^{4} + 3780 \, d x^{3} + 23040 \, e x^{2} + 2064 \, d x -{\left ({\left (313 \, d - 512 \, e\right )} x^{8} - 10 \,{\left (313 \, d - 512 \, e\right )} x^{6} + 33 \,{\left (313 \, d - 512 \, e\right )} x^{4} - 40 \,{\left (313 \, d - 512 \, e\right )} x^{2} + 5008 \, d - 8192 \, e\right )} \log \left (x + 2\right ) + 32 \,{\left ({\left (13 \, d - 16 \, e\right )} x^{8} - 10 \,{\left (13 \, d - 16 \, e\right )} x^{6} + 33 \,{\left (13 \, d - 16 \, e\right )} x^{4} - 40 \,{\left (13 \, d - 16 \, e\right )} x^{2} + 208 \, d - 256 \, e\right )} \log \left (x + 1\right ) - 32 \,{\left ({\left (13 \, d + 16 \, e\right )} x^{8} - 10 \,{\left (13 \, d + 16 \, e\right )} x^{6} + 33 \,{\left (13 \, d + 16 \, e\right )} x^{4} - 40 \,{\left (13 \, d + 16 \, e\right )} x^{2} + 208 \, d + 256 \, e\right )} \log \left (x - 1\right ) +{\left ({\left (313 \, d + 512 \, e\right )} x^{8} - 10 \,{\left (313 \, d + 512 \, e\right )} x^{6} + 33 \,{\left (313 \, d + 512 \, e\right )} x^{4} - 40 \,{\left (313 \, d + 512 \, e\right )} x^{2} + 5008 \, d + 8192 \, e\right )} \log \left (x - 2\right ) - 9600 \, e}{41472 \,{\left (x^{8} - 10 \, x^{6} + 33 \, x^{4} - 40 \, x^{2} + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^3,x, algorithm="fricas")

[Out]

1/41472*(420*d*x^7 + 1536*e*x^6 - 2808*d*x^5 - 11520*e*x^4 + 3780*d*x^3 + 23040*e*x^2 + 2064*d*x - ((313*d - 5
12*e)*x^8 - 10*(313*d - 512*e)*x^6 + 33*(313*d - 512*e)*x^4 - 40*(313*d - 512*e)*x^2 + 5008*d - 8192*e)*log(x
+ 2) + 32*((13*d - 16*e)*x^8 - 10*(13*d - 16*e)*x^6 + 33*(13*d - 16*e)*x^4 - 40*(13*d - 16*e)*x^2 + 208*d - 25
6*e)*log(x + 1) - 32*((13*d + 16*e)*x^8 - 10*(13*d + 16*e)*x^6 + 33*(13*d + 16*e)*x^4 - 40*(13*d + 16*e)*x^2 +
 208*d + 256*e)*log(x - 1) + ((313*d + 512*e)*x^8 - 10*(313*d + 512*e)*x^6 + 33*(313*d + 512*e)*x^4 - 40*(313*
d + 512*e)*x^2 + 5008*d + 8192*e)*log(x - 2) - 9600*e)/(x^8 - 10*x^6 + 33*x^4 - 40*x^2 + 16)

________________________________________________________________________________________

Sympy [B]  time = 2.79382, size = 668, normalized size = 4.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(x**4-5*x**2+4)**3,x)

[Out]

(13*d - 16*e)*log(x + (-1106258459719280*d**4*e - 13113710954343*d**4*(13*d - 16*e) - 817263343042560*d**2*e**
3 + 153628968222720*d**2*e**2*(13*d - 16*e) + 9530197557248*d**2*e*(13*d - 16*e)**2 + 88038005760*d**2*(13*d -
 16*e)**3 + 5035763255214080*e**5 + 142661633703936*e**4*(13*d - 16*e) - 19670950215680*e**3*(13*d - 16*e)**2
- 557272006656*e**2*(13*d - 16*e)**3)/(22941256248261*d**5 - 2312740746035200*d**3*e**2 + 4473912813420544*d*e
**4))/1296 - (13*d + 16*e)*log(x + (-1106258459719280*d**4*e + 13113710954343*d**4*(13*d + 16*e) - 81726334304
2560*d**2*e**3 - 153628968222720*d**2*e**2*(13*d + 16*e) + 9530197557248*d**2*e*(13*d + 16*e)**2 - 88038005760
*d**2*(13*d + 16*e)**3 + 5035763255214080*e**5 - 142661633703936*e**4*(13*d + 16*e) - 19670950215680*e**3*(13*
d + 16*e)**2 + 557272006656*e**2*(13*d + 16*e)**3)/(22941256248261*d**5 - 2312740746035200*d**3*e**2 + 4473912
813420544*d*e**4))/1296 - (313*d - 512*e)*log(x + (-1106258459719280*d**4*e + 13113710954343*d**4*(313*d - 512
*e)/32 - 817263343042560*d**2*e**3 - 4800905256960*d**2*e**2*(313*d - 512*e) + 9306833552*d**2*e*(313*d - 512*
e)**2 - 85974615*d**2*(313*d - 512*e)**3/32 + 5035763255214080*e**5 - 4458176053248*e**4*(313*d - 512*e) - 192
09912320*e**3*(313*d - 512*e)**2 + 17006592*e**2*(313*d - 512*e)**3)/(22941256248261*d**5 - 2312740746035200*d
**3*e**2 + 4473912813420544*d*e**4))/41472 + (313*d + 512*e)*log(x + (-1106258459719280*d**4*e - 1311371095434
3*d**4*(313*d + 512*e)/32 - 817263343042560*d**2*e**3 + 4800905256960*d**2*e**2*(313*d + 512*e) + 9306833552*d
**2*e*(313*d + 512*e)**2 + 85974615*d**2*(313*d + 512*e)**3/32 + 5035763255214080*e**5 + 4458176053248*e**4*(3
13*d + 512*e) - 19209912320*e**3*(313*d + 512*e)**2 - 17006592*e**2*(313*d + 512*e)**3)/(22941256248261*d**5 -
 2312740746035200*d**3*e**2 + 4473912813420544*d*e**4))/41472 + (35*d*x**7 - 234*d*x**5 + 315*d*x**3 + 172*d*x
 + 128*e*x**6 - 960*e*x**4 + 1920*e*x**2 - 800*e)/(3456*x**8 - 34560*x**6 + 114048*x**4 - 138240*x**2 + 55296)

________________________________________________________________________________________

Giac [A]  time = 1.13233, size = 166, normalized size = 1.16 \begin{align*} -\frac{1}{41472} \,{\left (313 \, d - 512 \, e\right )} \log \left ({\left | x + 2 \right |}\right ) + \frac{1}{1296} \,{\left (13 \, d - 16 \, e\right )} \log \left ({\left | x + 1 \right |}\right ) - \frac{1}{1296} \,{\left (13 \, d + 16 \, e\right )} \log \left ({\left | x - 1 \right |}\right ) + \frac{1}{41472} \,{\left (313 \, d + 512 \, e\right )} \log \left ({\left | x - 2 \right |}\right ) + \frac{35 \, d x^{7} + 128 \, x^{6} e - 234 \, d x^{5} - 960 \, x^{4} e + 315 \, d x^{3} + 1920 \, x^{2} e + 172 \, d x - 800 \, e}{3456 \,{\left (x^{4} - 5 \, x^{2} + 4\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^3,x, algorithm="giac")

[Out]

-1/41472*(313*d - 512*e)*log(abs(x + 2)) + 1/1296*(13*d - 16*e)*log(abs(x + 1)) - 1/1296*(13*d + 16*e)*log(abs
(x - 1)) + 1/41472*(313*d + 512*e)*log(abs(x - 2)) + 1/3456*(35*d*x^7 + 128*x^6*e - 234*d*x^5 - 960*x^4*e + 31
5*d*x^3 + 1920*x^2*e + 172*d*x - 800*e)/(x^4 - 5*x^2 + 4)^2